543 lines
14 KiB
Lua
543 lines
14 KiB
Lua
local helpers = require('personal.luasnip-helper-funcs')
|
|
local get_visual = helpers.get_visual
|
|
|
|
-- Math context detection
|
|
local tex = {}
|
|
tex.in_mathzone = function() return vim.fn['vimtex#syntax#in_mathzone']() == 1 end
|
|
tex.in_text = function() return not tex.in_mathzone() end
|
|
|
|
-- Return snippet tables
|
|
return
|
|
{
|
|
-- SUPERSCRIPT
|
|
s({trig = "([%w%)%]%}])'", wordTrig=false, regTrig = true, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>^{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
d(1, get_visual),
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- SUBSCRIPT
|
|
s({trig = "([%w%)%]%}]);", wordTrig=false, regTrig = true, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>_{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
d(1, get_visual),
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- SUBSCRIPT AND SUPERSCRIPT
|
|
s({trig = "([%w%)%]%}])__", wordTrig=false, regTrig = true, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>^{<>}_{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
i(1),
|
|
i(2),
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- TEXT SUBSCRIPT
|
|
s({trig = 'sd', snippetType="autosnippet", wordTrig=false},
|
|
fmta("_{\\mathrm{<>}}",
|
|
{ d(1, get_visual) }
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- SUPERSCRIPT SHORTCUT
|
|
-- Places the first alphanumeric character after the trigger into a superscript.
|
|
s({trig = '([%w%)%]%}])"([%w])', regTrig = true, wordTrig = false, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>^{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
f( function(_, snip) return snip.captures[2] end ),
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- SUBSCRIPT SHORTCUT
|
|
-- Places the first alphanumeric character after the trigger into a subscript.
|
|
s({trig = '([%w%)%]%}]):([%w])', regTrig = true, wordTrig = false, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>_{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
f( function(_, snip) return snip.captures[2] end ),
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- EULER'S NUMBER SUPERSCRIPT SHORTCUT
|
|
s({trig = '([^%a])ee', regTrig = true, wordTrig = false, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>e^{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
d(1, get_visual)
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- ZERO SUBSCRIPT SHORTCUT
|
|
s({trig = '([%a%)%]%}])00', regTrig = true, wordTrig = false, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>_{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
t("0")
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- MINUS ONE SUPERSCRIPT SHORTCUT
|
|
s({trig = '([%a%)%]%}])11', regTrig = true, wordTrig = false, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>_{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
t("-1")
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- J SUBSCRIPT SHORTCUT (since jk triggers snippet jump forward)
|
|
s({trig = '([%a%)%]%}])JJ', wordTrig = false, regTrig = true, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>_{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
t("j")
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- PLUS SUPERSCRIPT SHORTCUT
|
|
s({trig = '([%a%)%]%}])%+%+', regTrig = true, wordTrig = false, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>^{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
t("+")
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- COMPLEMENT SUPERSCRIPT
|
|
s({trig = '([%a%)%]%}])CC', regTrig = true, wordTrig = false, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>^{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
t("\\complement")
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- CONJUGATE (STAR) SUPERSCRIPT SHORTCUT
|
|
s({trig = '([%a%)%]%}])%*%*', regTrig = true, wordTrig = false, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>^{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
t("*")
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- VECTOR, i.e. \vec
|
|
s({trig = "([^%a])vv", wordTrig = false, regTrig = true, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>\\vec{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
d(1, get_visual),
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- DEFAULT UNIT VECTOR WITH SUBSCRIPT, i.e. \unitvector_{}
|
|
s({trig = "([^%a])ue", wordTrig = false, regTrig = true, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>\\unitvector_{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
d(1, get_visual),
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- UNIT VECTOR WITH HAT, i.e. \uvec{}
|
|
s({trig = "([^%a])uv", wordTrig = false, regTrig = true, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>\\uvec{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
d(1, get_visual),
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- MATRIX, i.e. \vec
|
|
s({trig = "([^%a])mt", wordTrig = false, regTrig = true, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>\\mat{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
d(1, get_visual),
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- FRACTION
|
|
s({trig = "([^%a])ff", wordTrig = false, regTrig = true, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>\\frac{<>}{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
d(1, get_visual),
|
|
i(2),
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- ANGLE
|
|
s({trig = "([^%a])gg", regTrig = true, wordTrig = false, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>\\ang{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
d(1, get_visual),
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- ABSOLUTE VALUE
|
|
s({trig = "([^%a])aa", regTrig = true, wordTrig = false, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>\\abs{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
d(1, get_visual),
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- SQUARE ROOT
|
|
s({trig = "([^%\\])sq", wordTrig = false, regTrig = true, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>\\sqrt{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
d(1, get_visual),
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- BINOMIAL SYMBOL
|
|
s({trig = "([^%\\])bnn", wordTrig = false, regTrig = true, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>\\binom{<>}{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
i(1),
|
|
i(2),
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- LOGARITHM WITH BASE SUBSCRIPT
|
|
s({trig = "([^%a%\\])ll", wordTrig = false, regTrig = true, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>\\log_{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
i(1),
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- DERIVATIVE with denominator only
|
|
s({trig = "([^%a])dV", wordTrig = false, regTrig = true, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>\\dvOne{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
d(1, get_visual),
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- DERIVATIVE with numerator and denominator
|
|
s({trig = "([^%a])dvv", wordTrig = false, regTrig = true, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>\\dv{<>}{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
i(1),
|
|
i(2)
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- DERIVATIVE with numerator, denominator, and higher-order argument
|
|
s({trig = "([^%a])ddv", wordTrig = false, regTrig = true, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>\\dvN{<>}{<>}{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
i(1),
|
|
i(2),
|
|
i(3),
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- PARTIAL DERIVATIVE with denominator only
|
|
s({trig = "([^%a])pV", wordTrig = false, regTrig = true, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>\\pdvOne{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
d(1, get_visual),
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- PARTIAL DERIVATIVE with numerator and denominator
|
|
s({trig = "([^%a])pvv", wordTrig = false, regTrig = true, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>\\pdv{<>}{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
i(1),
|
|
i(2)
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- PARTIAL DERIVATIVE with numerator, denominator, and higher-order argument
|
|
s({trig = "([^%a])ppv", wordTrig = false, regTrig = true, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>\\pdvN{<>}{<>}{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
i(1),
|
|
i(2),
|
|
i(3),
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- SUM with lower limit
|
|
s({trig = "([^%a])sM", wordTrig = false, regTrig = true, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>\\sum_{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
i(1),
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- SUM with upper and lower limit
|
|
s({trig = "([^%a])smm", wordTrig = false, regTrig = true, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>\\sum_{<>}^{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
i(1),
|
|
i(2),
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- INTEGRAL with upper and lower limit
|
|
s({trig = "([^%a])intt", wordTrig = false, regTrig = true, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>\\int_{<>}^{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
i(1),
|
|
i(2),
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- INTEGRAL from positive to negative infinity
|
|
s({trig = "([^%a])intf", wordTrig = false, regTrig = true, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>\\int_{\\infty}^{\\infty}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- BOXED command
|
|
s({trig = "([^%a])bb", wordTrig = false, regTrig = true, snippetType="autosnippet"},
|
|
fmta(
|
|
"<>\\boxed{<>}",
|
|
{
|
|
f( function(_, snip) return snip.captures[1] end ),
|
|
d(1, get_visual)
|
|
}
|
|
),
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
--
|
|
-- BEGIN STATIC SNIPPETS
|
|
--
|
|
|
|
-- DIFFERENTIAL, i.e. \diff
|
|
s({trig = "df", snippetType="autosnippet", priority=2000, snippetType="autosnippet"},
|
|
{
|
|
t("\\diff"),
|
|
},
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- BASIC INTEGRAL SYMBOL, i.e. \int
|
|
s({trig = "in1", snippetType="autosnippet"},
|
|
{
|
|
t("\\int"),
|
|
},
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- DOUBLE INTEGRAL, i.e. \iint
|
|
s({trig = "in2", snippetType="autosnippet"},
|
|
{
|
|
t("\\iint"),
|
|
},
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- TRIPLE INTEGRAL, i.e. \iiint
|
|
s({trig = "in3", snippetType="autosnippet"},
|
|
{
|
|
t("\\iiint"),
|
|
},
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- CLOSED SINGLE INTEGRAL, i.e. \oint
|
|
s({trig = "oi1", snippetType="autosnippet"},
|
|
{
|
|
t("\\oint"),
|
|
},
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- CLOSED DOUBLE INTEGRAL, i.e. \oiint
|
|
s({trig = "oi2", snippetType="autosnippet"},
|
|
{
|
|
t("\\oiint"),
|
|
},
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- GRADIENT OPERATOR, i.e. \grad
|
|
s({trig = "gdd", snippetType="autosnippet"},
|
|
{
|
|
t("\\grad "),
|
|
},
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- CURL OPERATOR, i.e. \curl
|
|
s({trig = "cll", snippetType="autosnippet"},
|
|
{
|
|
t("\\curl "),
|
|
},
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- DIVERGENCE OPERATOR, i.e. \divergence
|
|
s({trig = "DI", snippetType="autosnippet"},
|
|
{
|
|
t("\\div "),
|
|
},
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- LAPLACIAN OPERATOR, i.e. \laplacian
|
|
s({trig = "laa", snippetType="autosnippet"},
|
|
{
|
|
t("\\laplacian "),
|
|
},
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- PARALLEL SYMBOL, i.e. \parallel
|
|
s({trig = "||", snippetType="autosnippet"},
|
|
{
|
|
t("\\parallel"),
|
|
}
|
|
),
|
|
-- CDOTS, i.e. \cdots
|
|
s({trig = "cdd", snippetType="autosnippet"},
|
|
{
|
|
t("\\cdots"),
|
|
}
|
|
),
|
|
-- LDOTS, i.e. \ldots
|
|
s({trig = "ldd", snippetType="autosnippet"},
|
|
{
|
|
t("\\ldots"),
|
|
}
|
|
),
|
|
-- EQUIV, i.e. \equiv
|
|
s({trig = "eqq", snippetType="autosnippet"},
|
|
{
|
|
t("\\equiv "),
|
|
}
|
|
),
|
|
-- SETMINUS, i.e. \setminus
|
|
s({trig = "stm", snippetType="autosnippet"},
|
|
{
|
|
t("\\setminus "),
|
|
}
|
|
),
|
|
-- SUBSET, i.e. \subset
|
|
s({trig = "sbb", snippetType="autosnippet"},
|
|
{
|
|
t("\\subset "),
|
|
}
|
|
),
|
|
-- APPROX, i.e. \approx
|
|
s({trig = "px", snippetType="autosnippet"},
|
|
{
|
|
t("\\approx "),
|
|
},
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- PROPTO, i.e. \propto
|
|
s({trig = "pt", snippetType="autosnippet"},
|
|
{
|
|
t("\\propto "),
|
|
},
|
|
{condition = tex.in_mathzone}
|
|
),
|
|
-- COLON, i.e. \colon
|
|
s({trig = "::", snippetType="autosnippet"},
|
|
{
|
|
t("\\colon "),
|
|
}
|
|
),
|
|
-- IMPLIES, i.e. \implies
|
|
s({trig = ">>", snippetType="autosnippet"},
|
|
{
|
|
t("\\implies "),
|
|
}
|
|
),
|
|
-- DOT PRODUCT, i.e. \cdot
|
|
s({trig = ",.", snippetType="autosnippet"},
|
|
{
|
|
t("\\cdot "),
|
|
}
|
|
),
|
|
-- CROSS PRODUCT, i.e. \times
|
|
s({trig = "xx", snippetType="autosnippet"},
|
|
{
|
|
t("\\times "),
|
|
}
|
|
),
|
|
}
|